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1. INTRODUCTION
Frequency conversion, via three-wave mixing (TWM) proc-
esses in quadratic nonlinear optical media, is widely used in
order to generate laser frequencies that are not available by
direct laser action [1]. The efficiency of a TWM process de-
pends on the fulfillment of a phase-matching condition [1,2].
Quasi-phase-matching (QPM) [1–3], amethod inwhich the sign
of the nonlinear coefficient is modulated, facilitates control
over phase-matching conditions. Still, QPM processes are
generally not robust against variation in system parameters,
such as temperature, input wavelength, and incidence angle.

Recently, several works have been published that concern
robust adiabatic TWM processes in the fixed (undepleted)
pump approximation [4–12], i.e., when one of the waves is
much more intense than the others, and thus is negligibly
affected by the interaction. This assumption linearizes the
dynamics, making it isomorphous to the linear Schrödinger
equation of quantum mechanics, and thus allows the use of
quantum mechanical adiabatic theorem [13].

The first step toward fully nonlinear TWM was taken by
Baranova et al. [14], for the special case of second-harmonic
generation (SHG). Phillips and co-workers extended the work
into the realm of optical parametric amplification (OPA) and
optical parametric oscillation (OPO) [15,16]. However, these
works do not provide a rigorous physical model explaining the
observed phenomena. Rather, it was stated that this is a gen-
eralization of the case with fixed pump, analogous with a
quantum model of a two-level atom [17]. This generalization
is not self-evident, as the removal of the fixed pump approxi-
mation invalidates the analogy made with other systems.
Specifically, a reference was made to the geometrical repre-
sentation of TWM made by Luther et al. [18] as being analo-
gous to that made by Crisp [17] with regards to a nonlinear

two-level atom, which builds on the Feynman, Vernon, and
Hellwarth model [19]. We maintain that this analogy does
not hold, since the nonlinearities in the two physical systems,
TWM and two-level atom, are of different nature. The dynam-
ics of the two-level atom remain linear at all times, as the ef-
fective wave vector is governed entirely by the electric field,
which is taken to be independent of the atomic state in the
approximation made by Crisp. The nonlinearity is expressed
in the resulting susceptibility of the atom. Contrarily, in the
TWM geometrical representation, the analogous quantity to
the effective wave vector is a function of the interacting field
amplitudes, which renders the dynamics itself nonlinear. Two
exceptions are special cases for which a sound physical model
was found: (i) the case studied by Longhi [20], in which SHG
was followed by sum-frequency generation (SFG) to generate
the third harmonic, which was found to be analogous to a cer-
tain nonlinear quantum system [21], and (ii) the case of OPA
with high initial pump-to-signal ratio, which Yaakobi et al. [22]
approached as a case of autoresonance.

Other groups have taken up quantum systems with fully
nonlinear dynamics, and developed a theory of adiabatic evo-
lution for them [23–25]. Interestingly, they base their method
on representing the Schrödinger equation in a canonical
Hamiltonian structure, as was done in classical mechanics,
and use classical adiabatic invariance theorem [26]. The equa-
tions governing TWM have also been put in a canonical
Hamiltonian structure in several works [18,27,28], but not
in the context of adiabatic evolution.

Here, a comprehensive physical model of fully nonlinear
adiabatic TWM is presented for the first time to the best of
our knowledge. This analysis leads to a condition for efficient,
broadband and robust frequency conversion. Such conversion
is demonstrated numerically.
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This paper is organized as follows. In Section 2, the theo-
retical model of TWM is presented, along with this system’s
stationary states, using canonical Hamiltonian structures. In
Section 3, adiabatic evolution is analyzed, and an analysis
of robustness leading to large bandwidth is provided. Section 4
presents numerical simulations of adiabatic TWM with physi-
cally realistic parameters, available with current technology.

2. THEORETICAL MODEL
A. Coupled-Wave Equations in Canonical Hamiltonian
Structure
The dynamics of TWM is commonly described by three
coupled-wave equations. Assuming plane waves and a slowly
varying envelope, the three equations are [1,2]

dA1

dz
� −iγ1A�

2A3 exp
�
−i

Z
z

0
Δk�z0�dz0

�
dA2

dz
� −iγ2A�
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Δk�z0�dz0
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0
Δk�z0�dz0

�
; (1)

where γj � χ�2�ω2
j ∕�kjc2� are the coupling coefficients, and kj

and Aj are the wavenumber and complex amplitude of the
wave at frequencyωj , respectively. χ�2� is the second-order non-
linear susceptibility and Δk � k1 � k2 − k3 is the phase mis-
match. Without loss of generality we assume ω1 ≤ ω2 < ω3,
where ω3 � ω1 � ω2.

From this point, we follow the analysis of Luther et al. [18]
in the construction of a canonical Hamiltonian form of the
coupled-wave equations. First, we define Aj � ����

γj
p qj

exp�−i R z
0 Δk�z0�dz0� and note that this renders jqjj2 propor-

tional to the photon flux at ωj . Next, we write the three equa-
tions using qj :

dq1
dξ

� iΔΓq1 − iq�2q3

dq2
dξ

� iΔΓq2 − iq�1q3

dq3
dξ

� iΔΓq3 − iq1q2; (2)

where we also defined the scaled propagation length ξ �
z

�������������
γ1γ2γ3

p
and the parameter ΔΓ � Δk∕ �������������

γ1γ2γ3
p

, which de-
scribes the relative strength of the phase mismatch compared
to the nonlinearity. The coupled equations can now be written
in a canonical Hamiltonian structure:

dqj
dξ

� −2i
∂H
∂q�j

; (3)

where qj play the role of the generalized coordinates, q�j are
their conjugate generalized momenta, and

H � 1
2
�q�1q�2q3 � q1q2q�3� −

ΔΓ
2

X3
j�1

jqjj2 (4)

is the Hamiltonian. Additionally, we have the Poisson brackets
relations

fqi; qjg � 0; fq�i ; q�j g � 0; fqi; q�j g � −2iδij : (5)

Finally, we note that the Hamiltonian is invariant under the
phase transformations

�q1; q2; q3� → �q1 exp�iθ1�; q2; q3 exp�iθ1��; (6)

�q1; q2; q3� → �q1 exp�iθ2�; q2 exp�−iθ2�; q3�; (7)

�q1; q2; q3� → �q1; q2 exp�iθ3�; q3 exp�iθ3��; (8)

which can readily be shown to be generated by the Manley–
Rowe relations,

K1 � jq1j2 � jq3j2

K2 � jq1j2 − jq2j2

K3 � jq2j2 � jq3j2; (9)

i.e., the Kj are constants of the motion.

B. Stationary States
The stationary states are very significant for the adiabatic evo-
lution analyzed in Section 3. It will be shown there that when
an adiabaticity condition is satisfied, the system evolves
along these states as they follow a slowly changing system
parameter—the phase mismatch. Determining the depend-
ence of these states on phase mismatch is thus crucial for
predicting the outcome of adiabatic evolution.

The TWM system is known to have two stationary states
[29] besides the trivial ones, i.e., the states where two of
the three waves have no energy. For completeness, they will
be derived here as well. We note that any parametric instabil-
ities are ignored here, as we seek only stable solutions.

In a stationary state, the state of the system is transformed
into itself by the evolution dynamics. The coupled-wave equa-
tions 2 are invariant with respect to the transformation

�q1; q2; q3� → �q1 exp�iθ1ξ�; q2 exp�iθ2ξ�; q3 exp�i�θ1 � θ2�ξ��;
(10)

as evident from Eqs. (6) and (8). If

dqj
dξ

� iθjqj; j � 1; 2

dq3
dξ

� i�θ1 � θ2�q3; (11)

then Eq. (2) will perform the transformation (10) and remain
invariant, i.e., the system state will be transformed into itself.
Therefore, Eq. (11) defines the stationary states for this sys-
tem. Substituting these relations in Eq. (2) yields quartic equa-
tions of θ1 and θ2, with the Manley–Rowe relations as
parameters. For any given pair of Manley–Rowe constants,
there exist θ1 and θ2 that yield two nontrivial stationary states,
which we hence term the “plus state” and “minus state,” and
use corresponding indexes in mathematical expressions.
These solutions are very involved algebraically, and do not
facilitate physical insight. We therefore focus first on the spe-
cial case where the two low frequencies have the same photon

G. Porat and A. Arie Vol. 30, No. 5 / May 2013 / J. Opt. Soc. Am. B 1343



flux, i.e., jq1j2 � jq2j2 (note that still, generally, ω1 ≠ ω2),
which leads to two simple solutions:

q�1 � q�2 �
8<
:

���������������������������������������������ΔΓ−θ���ΔΓ−2θ��
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p
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:
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����
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2

q
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��������
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p (12)

and

q−1 � q−2 �
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:

��������������������������������������������
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−
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−
�

p
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−
ξ�; ΔΓ <

��������
2P3

p
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��������
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p
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��������
2P3

p
����
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2

q
· exp�iΔΓξ�; ΔΓ >

��������
2P3

p ; (13)

where

θ� � 5ΔΓ�
�����������������������
ΔΓ2 � 6P3

p
6

P3 ≡ K1 � K3: (14)

The normalized photon flux of each of the three waves, as a
function of the normalized (dimensionless) phase mismatch
ΔΓ∕

������
P3

p
, for each of the stationary states, is plotted in Fig. 1,

for the case where jq1j2 � jq2j2. For the minus state, as
ΔΓ∕

������
P3

p
approaches −∞, the photon flux of the waves with

the two lower frequencies (i.e., ω1 and ω2) approaches P3∕2. It
monotonically decreases with increasing ΔΓ∕

������
P3

p
up to

ΔΓ∕
������
P3

p �
���
2

p
, where it vanishes and stays nulled for any

ΔΓ∕
������
P3

p
>

���
2

p
. The high-frequency wave (ω3) photon flux ap-

proaches 0 for ΔΓ∕
������
P3

p
→ −∞, monotonically increases with

ΔΓ∕
������
P3

p
up to ΔΓ∕

������
P3

p �
���
2

p
, and stays constant at P3∕2 for

any ΔΓ∕P3 >
���
2

p
. The dependence of the plus state intensities

on ΔΓ is the mirror image, aroundΔΓ � 0, of the minus state’s
intensities dependence, i.e., jq�j �ΔΓ�j2 � jq−j �−ΔΓ�j2. Note that
where jq�1 j2 � jq�2 j2 � 0 the stationary states are in fact trivial.

Figure 2 shows the photon flux of each wave of the station-
ary states with the same parameters, for the case where
jq1j2 ≠ jq2j2. For the minus state, the three waves have the
same monotonic dependence on ΔΓ∕

������
P3

p
as in the special

case of jq1j2 � jq2j2, except that the two low-frequency waves

do not vanish (the kink that was observed atΔΓ∕
������
P3

p �
���
2

p
in

Fig. 1 is now missing). Instead, of these two waves, the one
that has the lower photon flux [jq−2 j2 in Fig. 2(a)] asymptoti-
cally approaches zero, while the other one remains
at a constant difference from it, which corresponds to the
value of K2 that characterizes this state. Since the stationary
state is also characterized by a certain value of K3, jq−3 j2
always complements jq−2 j2 to maintain the same K3. These
stationary states are thus never trivial. Furthermore, as
before, jq�j �ΔΓ�j2 � jq−j �−ΔΓ�j2.

C. Dimensionally Reduced Canonical Hamiltonian
Structure
The two previous subsections summarized representations
and properties of the TWM system that were already known.
In this subsection, a new representation is developed. This
representation will be used in Section 3 to account for
adiabatic evolution.

The existence of the constants of the motion Kj , in addition
to H, indicates that the number of degrees of freedom of the
system is lower than the dimensionality of the �qj; q�j � phase
space. As Liu et al. [23] have done for systems with U�1� sym-
metry, we will use these constants to produce a phase space
with reduced dimensionality. We define the real generalized
coordinates Qj and real generalized momenta Pj :

Q1 � −

1
8
arg�q1� −

1
8

arg�q2� �
1
8

arg�q3�

Q2 � −

1
4
arg�q1� �

1
4

arg�q2�

Q3 � −

1
8
arg�q1� −

1
8

arg�q2� −
1
8

arg�q3�; (15)

P1 � jq1j2 � jq2j2 − 2jq3j2

P2 � K2 � jq1j2 − jq2j2

P3 � K1 � K3 � jq1j2 � jq2j2 � 2jq3j2: (16)

Q1 is proportional to the phase difference between the two
low frequencies and the high frequency, Q2 is proportional
to the phase difference between the two low frequencies,
and Q3 is proportional to the sum of phases of all three waves.
Correspondingly, P1 represents the excess of photon flux in
the two low-frequency waves over the high-frequency wave,
P2 represents the excess of photon flux at ω1 over ω2, and
P3 represents the overall photon flux balance between
the three waves. Using these definitions, the canonical
Hamiltonian wave equations become
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Fig. 1. Normalized photon flux of each wave of the two stationary
states with jq1j2 � jq2j2. (a) Minus state and (b) plus state.

Fig. 2. Normalized photon flux of each wave of the two stationary
states with K2∕�K1 � K3� � 0.3. (a) Minus state and (b) plus state.
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dQj

dξ
� ∂H

∂Pj
;

dPj

dξ
� −

∂H
∂Qj

(17)

with the Poisson relations

fQi;Qjg � 0; fPi; Pjg � 0; fQi; Pjg � δij (18)

and the Hamiltonian

H � 1
8

���������������������������������������������������������������������������������������������
�P1 � 2P2 � P3��P1 − 2P2 � P3��−P1 � P3�

p
cos�8Q1�

−

ΔΓ
8

�P1 � 3P3�: (19)

The Hamiltonian is independent of Q2 and Q3, indicating that
P2 and P3 are constants of the motion, which is not surprising
since P2 � K2 and P3 � K1 � K3. P1 and Q1 thus form a
closed set of Hamiltonian dynamics. We further note that
the simple requirement that jqjj2 ≥ 0, j � 1, 2, 3 results in limit-
ing the range of physically significant values of P1 to
2jP2j − P3 ≤ P1 ≤ P3, for given P2 and P3. In fact, this exactly
corresponds to the range of P1 for which H is real. Note also
that, since P1 is bounded from below by 2jP2j − P3, when P2 ≠
0 it sets a limit on the minimum value of P1. This can be under-
stood from a physical point of view: if P2 ≠ 0 then the photon
fluxes at ω1 and ω2 are not the same. In upconversion, each
photon contributed to ω3 by one of these waves is accompa-
nied by a photon from the other wave, and causes P1 to de-
crease. When one of these waves is depleted the upconversion
process cannot continue, so P1 can no longer decrease. When
either jq1j2 � 0 or jq2j2 � 0 then, by definition, P1 �
−2P2 − P3 or P1 � 2P2 − P3, correspondingly. We further note
that for P2 ≠ 0 and any finite ΔΓ, P1 � 2jP2j − P3 is a trivial
stationary state; however, for jΔΓj → ∞ it is not.

The stationary states correspond to fixed points in the
�Q1; P1� phase space where

dQ1

dξ

����
�Q�

1 ;P
�
1 �

� ∂H
∂P1

����
�Q�

1 ;P
�
1 �

� 0

dP1

dξ

����
�Q�

1 ;P
�
1 �

� −

∂H
∂Q1

����
�Q�

1 ;P
�
1 �

� 0: (20)

The second equation results in

Q−

1 � 0; Q�
1 � π

8
: (21)

For the special case where the two low frequencies have the
same photon flux,

P�
1 � 2j�ΔΓ − θ���ΔΓ − 2θ��j − 2�ΔΓ − θ��2; (22)

and the constants of motion P2 and P3 take the values

P�
2 � 0

P�
3 � 2j�ΔΓ − θ���ΔΓ − 2θ��j � 2�ΔΓ − θ��2: (23)

Figures 3(a) and 3(b) show the reduced phase space por-
trait with P2 � 0 and P2 � 0.3P3, respectively, where in both
cases the phase mismatch is ΔΓ � 0.6

������
P3

p
. The fixed points,

which correspond to the stationary states, are labeled by their
indexes. The arrows indicate the direction of motion of the
fixed points with increasing phase mismatch ΔΓ. Figures 4(a)
and 4(b) display P�

1 as a function of the normalized phase mis-
match ΔΓ∕

������
P3

p
for each of the two stationary states, with

P2 � 0 and P2 � 0.3P3, respectively. Figure 4(a) shows that
P−

1 ≈ P3 for ΔΓ ≪ −

������
P3

p
, and it decreases monotonically with

increasing ΔΓ up to ΔΓ �
��������
2P3

p
. For any ΔΓ >

��������
2P3

p
, it stays

constant at −P3, all in correspondence with the intensity
dependence shown in Fig. 1. Similarly, P�

1 is the mirror image
of P−

1 around ΔΓ � 0, i.e., P�
1 �ΔΓ� � P−

1 �−ΔΓ�. In Fig. 4(b) it is
seen that P�

1 have the same monotonic dependence on
ΔΓ∕

������
P3

p
as in the P2 � 0 case, except that it persists through-

out the entire range of ΔΓ∕
������
P3

p
, i.e., there is no kink as in the

previous case. Instead, with increasingΔΓ∕
������
P3

p
, P−

1 goes from
P3 to an asymptote approaching 2jP2j − P3, and P�

1 is its
mirror image, as before.

3. ADIABATIC EVOLUTION AND
BANDWIDTH
A. Adiabatic Evolution
According to classical mechanical theory [26], an elliptic fixed
point will follow an adiabatically varying control parameter,
i.e., a parameter that changes slowly compared with the
frequencies of periodic orbits around the fixed point. It will
be shown how this adiabaticity condition naturally arises from
a linearization of the canonical Hamiltonian dynamics, i.e.,
Eq. (17), about the fixed point [23,26], where the adiabatically
varying parameter is the phase mismatch ΔΓ. The main result
of this work is the derivation of the adiabaticity condition, as
will be outlined below.

The linearization procedure of Eq. (17) is detailed in
Appendix A. It is shown that the nontrivial stationary states
correspond to elliptic fixed points, and that
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δP1 ≈
1
ν

dP�
1

dξ
sin�νξ�; (24)

where δP1 � P1 − P�
1 , i.e., it is the vertical difference between

the system point and a fixed point in the �Q1; P1� phase space.
ν is the frequency of periodic orbits around the fixed point. In
the ideal case, the system would be exactly at the stationary
state throughout the entire interaction, i.e., δP1 � 0. We thus
set the nonlinear adiabaticity condition to be

rnl≡

������
h
1
2 �jq1j2 � jq2j2� − jq3j2

i
−

h
1
2 �jq�1 j2 � jq�2 j2� − jq�3 j2

i
1
2 �jq1j2 � jq2j2� � jq3j2

������
�
���� δP1

P3

���� ≪ 1: (25)

The physical interpretation of rnl is as follows. Each of the
two terms in square brackets represents photon flux excess of
the low-frequency waves over the high-frequency waves. The
first of these terms is for the state under consideration, while
the second is for the stationary state. Therefore, the complete
numerator represents the difference in photon flux excess
between a given set of waves and the stationary state. The
denominator normalizes this quantity by the overall photon
flux balance between the three waves.

Using the approximate solution of Eq. (24) for δP1, this
condition becomes

���� d�P�
1 ∕P3�
dξ

���� �
����d�P�

1 ∕P3�
dΔΓ

dΔΓ
dξ

���� ≪ ν; (26)

which means that in order to maintain adiabaticity, the rate of
change of the normalized stationary state photon flux excess
in the low frequencies over the high frequencies, P�

1 ∕P3, has
to be much slower than the frequency of periodic orbit around
the fixed point, as expected from classical mechanical theory.
Equation (26) is the main result of this work. For the special
case of jq1j2 � jq2j2 and ΔΓ � 0, this inequality leads to

2������
27

p 1
P3

����dΔΓdξ

���� ≪ 1: (27)

Adiabaticity can thus be more closely satisfied when the over-
all intensity is higher (which increases the overall photon flux
P3) and when the rate of change of the phase mismatch
is lower.

Having established that the system can adiabatically follow
changes in the phase mismatch ΔΓ, we consider the special
case where the system is prepared in a nontrivial stationary
state of Eq. (22), jΔΓj ≫

��������
2P3

p
at the beginning and end of

the interaction, and ΔΓ ends with a sign opposite to the
one it started with. Clearly, from Fig. 1, when jq1j2 � jq2j2
the adiabatic interaction would result in a complete energy
transfer from the two lower frequencies, ω1 and ω2, to the high
frequency, ω3. Since it was established that P�

1 �ΔΓ∕
������
P3

p � �
P−

1 �−ΔΓ∕
������
P3

p �, we will concentrate on adiabatic following
of P−

1 , where it is readily understood that everything applies
to P�

1 upon reversal of the chirp direction.
In order to demonstrate adiabatic evolution, Eq. (1) was

solved numerically for three different cases. The results are

displayed in Fig. 5. In this figure, the dashed curves corre-
spond to the minus stationary state, calculated using Eq. (22).
rnl in (c), (f), and (i) was calculated using Eq. (26). In all three
cases the system started in the minus state. In each case the
phase mismatch chirp rate was different, i.e., ΔΓ was
always linearly chirped from −10

������
P3

p
to 10

������
P3

p
, but the inter-

action length was varied. In the first case, shown in
Figs. 5(a)–5(c), the normalized interaction length was
Δξ

������
P3

p � 1. Clearly in this case the system does not follow
the stationary state. Correspondingly, the adiabatic condition
is not satisfied, as rnl reaches a value much greater than 1. In
the second case, displayed in Figs. 5(d)–5(f), Δξ

������
P3

p � 10. In
this case the stationary state is more closely followed, yet only
to a limited extent. This is also reflected in the fact that rnl
reaches 0.85. Note that the area of departure from the station-
ary state in Figs. 5(d) and 5(e) corresponds to the area where r
increases toward 0.85 in Fig. 5(f). Finally, in the third case,
Δξ

������
P3

p � 100. Figures 5(g)–5(i) show that in this case the sta-
tionary state is very closely followed, and rnl ≪ 1 throughout
the entire interaction.

In the general case of jq1j2 ≠ jq2j2, i.e., P2 ≠ 0, P1 will go
from P3 to 2jP2j − P3 for increasing ΔΓ, when the adiabaticity
condition is met. This means that energy will be transferred
from the two low frequencies ω1 and ω2 to the high frequency
ω3, until one of the two low frequencies is depleted. A numeri-
cal simulation of such a case is displayed in Fig. 6, where
P2 � 0.3P3. As seen in Fig. 6(a), energy is adiabatically trans-
ferred from the low frequencies to the high frequency until
none is left at ω2. From that point on, the three waves inten-
sities remain essentially unchanged. Figure 6(b) shows the
corresponding value of P1∕P3, which indeed goes from 1 to
�2jP2j − P3�∕P3 � −0.4, as expected.

A special case of the nonlinear adiabatic evolution is the
case of constant pump approximation [4–12], where the dy-
namics becomes linear. In this scenario, one of the three
waves (the pump wave) was taken to be much more intense
than the other two waves, while another wave was assumed to
start with no energy. Under the assumption that the effect of
the interaction on the pump wave is negligible, the remaining
two waves form a linear dynamical system, to which the linear
adiabatic theorem applies. As a result, energy would flow
from one interacting wave to the other. Such a situation
was simulated here as well, without making the fixed pump
approximation, with the results displayed in Fig. 7. In this
case, the input pump-to-signal ratio was jq2�0�j2∕jq1�0�j2 �
100 and jq3�0�j2 � 0. Figure 7(a) shows that all of the photon
flux was transferred from ω1 to ω3, with equal contribution
from ω2 as evident from the inset. This corresponds com-
pletely to the above description, i.e., the adiabatic interaction
took place until the ω1 wave was depleted. Figure 7(b)
shows that P1∕P3 traveled from 1 to 2jP2j − P3 � 0.96, as
expected.

Finally, we note that a trivial stationary state does not cor-
respond to an elliptic fixed point in the �Q1; P1� phase space
(see Appendix A), so it would not perform adiabatic following
due to changing phase mismatch. This of course can be ex-
pected on physical grounds, as we do not expect the intensity
of the only present frequency to be affected by changes in
phase mismatch between it and absent frequencies. Interest-
ingly, for the case where jq1j2 � jq2j2, each of the two nontri-
vial stationary states can actually follow the adiabatically
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varying phase mismatch into a trivial stationary state with
jq1j2 � jq2j2 � 0, as evident from Figs. 1 and 4.

To summarize this section, adiabatic following can be ob-
tained when the system is prepared to be near a nontrivial sta-
tionary state, i.e., such that δP1 ≪ P3, and the rate of change
of the scaled phase mismatch ΔΓ is sufficiently small for the
given overall photon flux balance P3, as prescribed by
Eq. (26). If ΔΓ changes monotonically, changing signs from
beginning to end, and jΔΓj ≫ ������

P3
p

at the beginning and end
of the interaction, the system will evolve adiabatically from
P1 � P3 to P1 � 2jP2j − P3, or vice versa. The former corre-
sponds to upconversion, which ends when one of the two
low-frequency waves is depleted (the one that started with
the lower photon flux). The latter corresponds to downcon-
version, which continues until the high-frequency wave is de-
pleted. In the special case where P2 � 0, the system can only
evolve from P1 � P3 to P1 � −P3, but not in the reverse direc-
tion, since P1 � −P3 is a trivial stationary state that does not
correspond to an elliptic fixed point in the �Q1; P1� reduced
phase space.

As a final note, we would like to suggest that the same
method can be applied to frequency-cascaded and spatially
simultaneous TWM processes or higher-order nonlinear

adiabatic processes. For example, four-wave mixing has also
been put into canonical Hamiltonian structure, and sym-
metries, corresponding conservation laws and stationary
states have been identified [30]. Optical fiber tapering can be
used to facilitate adiabatic evolution. A detailed analysis will
be carried out elsewhere.

B. Bandwidth
Adiabatic TWM processes have numerically been shown to be
robust against changes in various parameters, e.g., wave-
length and temperature [4–8,11,12], which are manifested in
changes in the phase mismatch. This robustness stems from
the fact that ΔΓ is swept along a large range of values, so a
wide range of physical conditions can result in ΔΓ within the
range that satisfies the conditions for adiabatic evolution.

An estimate of the bandwidth will now be given and
demonstrated. First, we define the conversion efficiency for
following the minus state with increasing ΔΓ:

η≡
P3

2�jP2j − P3�

�
P1

P3
− 1

�
: (28)
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Under this definition, η�P1 � P3� � 0 and η�P1 �
jP2j − P3� � 1. The FWHM of η is estimated to be (see
Appendix B for details)

ΔΓBW � ΔΓ�Δξ∕2� − ΔΓ�−Δξ∕2�: (29)

The estimated bandwidth is therefore independent of the
intensities of the interacting waves, as it depends only on
the chirp range of ΔΓ.

The conversion efficiency η for P2 � 0 and P2 � 0.3P3 is
depicted in Figs. 8(a) and 8(b), respectively, versus the nor-
malized phase mismatch at the center of the interaction
medium. In this simulation, the chirp rate and interaction
length were kept constant. The vertical dashed lines indicate
the locations where the estimated efficiency is 1∕2, estab-
lished by introducing P−

1 � jP2j into Eq. (11). For P2 � 0
and P2 � 0.3P3, the simulated bandwidth ΔΓBW∕

������
P3

p
is

19.46 and 19.7, respectively. For both cases, the estimated
bandwidth is ΔΓBW∕

������
P3

p � 20, which is within 3% of the
numerical results.

For a given chirped phase mismatch, the bandwidth will
depend on intensity where intensity determines whether
the adiabatic evolution conditions are satisfied. On the one
hand, when the intensity is too low to satisfy the adiabatic
condition of Eq. (26), the efficiency will always be low. Shift-
ing of ΔΓ�0� from ∼0 will more quickly deteriorate efficiency
than when adiabatic following takes place, thus the bandwidth
is expected to be lower. On the other hand, when the intensity
is high enough, jΔΓj ≫ ������

P3
p

will never be satisfied, so P1 will
not be close to P3 at the beginning of the interaction.
However, in this case adiabatic following is still maintained
to some extent, i.e., the motion of P−

1 is still slow enough to
satisfy Eq. (26), so P1 can follow it. P1 will thus orbit the adia-
batically moving fixed point with a large orbit diameter. This
will cause the efficiency to oscillate rapidly for various ΔΓ�0�,
so a useful definition of bandwidth is difficult to find. These
phenomena are demonstrated numerically in Section 4.

Finally, we note that the bandwidth estimation of Eq. (29) is
valid not only for following the minus state, but whenever the
requirements of adiabatic following are satisfied, i.e., P1 ≈ P3

or P1 ≈ 2jP2j − P3 at the beginning of the interaction, ΔΓ
chirped such that it changes sign from beginning to end,
jΔΓj ≫ ������

P3
p

at the beginning and end of the interaction and
Eq. (26) is satisfied throughout the entire process (the details
can be found in Appendix B). It follows that the rest of the
discussion, regarding intensity too low or too high to satisfy

all of the aforementioned requirements, is also true for all
cases, not just those related to P−

1 and increasing ΔΓ.

4. NUMERICAL SIMULATIONS
In this section, the results of numerical simulations of Eq. (1)
will be shown, with physical dimensions rather than normal-
ized units. It will be demonstrated that fully nonlinear, effi-
cient and wideband adiabatic frequency conversion can
readily be applied in a wide variety of physically available con-
figurations, using QPM. In all of the simulations presented be-
low, the nonlinear medium was taken to be a 40 mm long
MgO-doped LiNbO3 crystal with χ�2� � 50 pm∕V [31]. The
Sellmeier equations of Gayer et al. [32] were used to account
for dispersion. Note that Eq. (1) essentially assumes continu-
ous waves. The range of validity of the simulation results with
regard to pulse duration is discussed below.

SFG is addressed first. In this simulation, λ2 � 1064.5 nm
(corresponding to the lasing wavelength of Nd:YAG) and λ1
is tuned in the range 1450–1650 nm (i.e., around the
telecommunication wavelength 1550 nm), which yields
614 < λ3 < 647 nm. The input intensities of the two low
frequencies are chosen such that they have the same photon
flux when λ1 � 1550 nm, and the sum-frequency wave at λ3
was always taken to start with no energy. The simulated crys-
tal had chirped QPM modulation, with a linearly increasing
local period starting at 11.52 μm and ending at 11.79 μm. This
corresponded to ΔΓ that goes from −3

������
P3

p
to 3

������
P3

p
for a total

input intensity of 200 MW∕cm2 when λ1 � 1550 nm.
Figure 9(a) shows the intensities of the three waves along

the crystal when λ1 � 1550 nm and the total input intensity
was 200 MW∕cm2. As expected, energy is very efficiently
transferred from the two low frequencies to the high fre-
quency. The photon flux conversion efficiency η, defined by
Eq. (28), is 0.93. Figure 9(b) shows the conversion efficiency
as a function of input wavelength, for several input intensities.
For input intensities of 2 and 200 MW∕cm2, the maximum ef-
ficiency was 0.11 and 0.97, with bandwidths of 54.2 and
55.5 nm, respectively. These results correspond to the analysis
given in Subsection 3.B: the significant increase of efficiency,
and the slight increase in bandwidth, with intensity, is related
to improvement in the satisfaction of the adiabatic condition
of Eq. (26). For input intensity of 20;000 MW∕cm2, the effi-
ciency performs oscillations across the λ1 tuning range, as pre-
dicted, due to the fact that the system point is orbiting the
fixed point from a relatively large distance.

SHG can be considered as a special case of SFG with
jq1j2 � jq2j2, where, additionally, ω1 � ω2. A simulation was
conducted for this case well, where the QPM period was
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linearly chirped from 18.83 to 19.44 μm, once again corre-
sponding to ΔΓ that goes from −3

������
P3

p
to 3

������
P3

p
for input in-

tensity of 200 MW∕cm2 when λ1 � 1550 nm. All other
parameters were the same as before. The outcome is dis-
played in Fig. 10, showing results similar to the case of
SFG with ω1 ≠ ω2. For input intensity of 200 MW∕cm2, at λ1 �
1550 nm the conversion efficiency was 0.96, and the band-
width was 42 nm.

Difference frequency generation (DFG) is the case where
energy is transferred from the high frequency to the two
low frequencies. In the DFG simulations λ3 � 1064.5 nm
and λ2 was tuned over 1450–1800 nm, which generates 2605 <
λ1 < 4004 nm (consistent with our convention that
ω1 < ω2 < ω3). The QPM period was linearly chirped from
29.86 to 30.86 μm, and here also ΔΓ goes from −3

������
P3

p
to

3
������
P3

p
for input intensity of 200 MW∕cm2 when λ2 �

1550 nm (the other low frequency, ω1, always starts with
no energy). All other parameters were the same as before.
In Fig. 11(a), it is seen that energy is efficiently transferred
from the high frequency to the two low frequencies, for the
case of λ2 � 1550 nm and input intensity of 200 MW∕cm2.
Note that in this case the system follows the plus stationary
state (P1 starts out negative). The conversion efficiency is
thus 1 − η, which corresponds to the degree of depletion of
the high frequency. For the case presented in Fig. 11(a),
the efficiency is 0.95. Figure 11(b) displays the conversion ef-
ficiency versus λ2 for different input intensities, showing the
same dependence as in the previous cases. For input intensity
of 200 MW∕cm2, the bandwidth was 212 nm.

The special case of DFG where the input intensity of the
high frequency is much higher than that of the input low fre-
quency (ω2 in this case), is commonly denoted OPA. In the
OPA simulation, the QPM structure was designed such that
ΔΓ goes from −2

������
P3

p
to 2

������
P3

p
when λ2 � 1550 nm and the

input intensity is 400 MW∕cm2. Also, the ω2 input intensity
was 20 times lower than the ω3 input intensity. The resulting
QPM period was linearly chirped over 29.98–30.85 μm. All
other parameters are the same as for the DFG simulation.
Figure 12(a) shows the intensities of the three waves along the
crystal for λ2 � 1550 nm and input intensity of 400 MW∕cm2.
As before, energy is seen to efficiently transfer from the high
frequency to the two low frequencies, resulting in conversion
efficiency of 0.97. From start to end, the intensity at ω2 was
amplified by a factor of 13.6. In Fig. 11(b), the conversion
efficiency is plotted versus λ2 for different input intensities,
with the same behavior as noted above. A detailed numerical
investigation of adiabatic OPA has been conducted by
Phillips and Fejer [15].

The range of parameters used above shows that adiabatic
TWM can readily be used with nanosecond to picosecond
pulsed lasers in bulk media. For nanosecond pulses, damage
limits intensity to ∼500 MW∕cm2 [33], while for picosecond
pulses damage can be avoided even with intensities greater
than 40 GW∕cm2 [1,33,34]. Since group velocity mismatch in-
volved with subpicosecond pulses will deteriorate perfor-
mance, such short pulses could be stretched, converted, and
compressed again [4–7]. It is also possible to use continuous-
wave lasers in guided structures (e.g., QPM waveguides [3]).
Furthermore, all modulation chirp ranges assumed here are
feasible with current technology: modulation periods as short
as 1.4 μm have been reported for LiNbO3 [3], i.e., 8 times
smaller than the smallest period assumed here. This indicates
that such chirped modulation patterns can be fabricated with
high accuracy. Additionally, despite the short chirp range of
0.3 ∼ 1 μm, small fabrication errors are not expected to signifi-
cantly affect the interaction. As long as the chirp range is rea-
sonably maintained for a given crystal length, the interaction
will be adiabatic and thus evolve as expected.

The combination of broad bandwidth and intensity depend-
ence of efficiency suggests another application of fully nonlin-
ear TWM—cleaning the unwanted pedestal of intense
ultrashort pulses [35,36]. This could be performed using
two QPM crystals, as follows. First, the input beam should
be linearly polarized at 45 deg to two of the crystals optical
axes, namely the ordinary and extraordinary axes. In this man-
ner, half of the input energy would be at the ordinary polari-
zation, and half at the extraordinary polarization. We denote
these frequency and polarization components ωo and ωe, re-
spectively. The first crystal will perform cross-polarized
adiabatic SHG of the extraordinary polarization, i.e.,
ωe � ωe → 2ωo. Since conversion efficiency depends on inten-
sity, the high-power parts of the pulse will be more efficiently
converted than the low-power parts. Therefore, after the first
crystal, the ωe wave contains the remaining low-power parts
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of the pulse. These are eliminated by placing a polarizer,
aligned along the ordinary axis, following the first crystal.
After the polarizer, we are left with the generated 2ωo wave
and the original (uncleaned) ωo wave. These waves now enter
the second crystal, which performs the degenerate cross-
polarized DFG process 2ωo − ωo → ωe. Once again, the proc-
ess favors the high-power parts of the pulse at ωo. Passing the
output through a polarizer aligned along the extraordinary
wave will eliminate the residual low-power at ωo as well as
2ωo, leaving only the cleaned pulse at ωe.

5. CONCLUSION
Adiabatic TWMwith fully nonlinear dynamicswas put on a firm
physical basis by rigorous analysis, detailing the conditions for
obtaining adiabatic evolution. Just as the adiabatic TWM in the
linear dynamics regime was developed from an analogy with
linear quantum systems [4,5], the method used here also fol-
lows, in general terms, an analysis of adiabatic evolution of
nonlinear quantum systems [21,23,24]. Furthermore, the non-
linear adiabatic condition was determined, and an estimation
of the bandwidth of adiabatic TWM processes was derived and
shown to be consistent with numerical results. In addition,
numerical simulations were used to demonstrated fully nonlin-
ear adiabatic frequency conversion in several configurations
attainable with current technology. Specifically, adiabatic
SFG, SHG, DFG, and OPA were all shown to be efficient over
a wide band of input frequencies, using intensities character-
istic of nanosecond pulses in bulk interactions or continuous
wave lasers in guided structures. It was also explained how
adiabatic TWM could be used to facilitate efficient pulse clean-
ing. Finally, it was suggested that adiabatic evolution of
frequency-cascaded and spatially simultaneous TWM proc-
esses or higher-order nonlinear processes, such as four-wave
mixing, can also be treated using the same method.

APPENDIX A: LINEARIZATION OF THE
CANONICAL HAMILTONIAN DYNAMICS
This appendix details the linearization procedure that was uti-
lized to obtain Eq. (24). Linearization of Eq. (17), i.e., of
∂H∕∂P1 and ∂H∕∂Q1, can be accomplished in a single step,
by approximating the Hamiltonian H with a Taylor expansion
around a fixed point �Q�

1 ; P
�
1 � up to second order:

H�Qj; Pj� ≈ H�Q�
j ; P

�
j � �

1
2
∂2H
∂Q2

1

����
�Q�

j ;P
�
j �
δQ2

1 �
1
2
∂2H
∂P2

1

����
�Q�

j ;P
�
j �
δP2

1;

(A1)

where δQ1 � Q1 − Q�
1 , δP1 � P1 − P�

1 , and we have
used Eq. (20), and also ∂2H∕∂Q1P1j�Q�

j ;P
�
j � � 0. Substituting

the approximate Hamiltonian in Eq. (17) leads to the
linear equations of motion:

d
dξ

�
δP1

δQ1

�
�

2
6664

0 −
∂2H
∂Q2

1

����
Q�
1 ;P
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1

∂2H
∂P2

1
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Q�
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�
1

0

3
7775
�
δP1

δQ1

�
−

2
4 dP�

1
dξ
dQ�

1
dξ

3
5:
(A2)

Note that the variation in ΔΓ causes P�
1 to be ξ dependent,

and thus dP�
1 ∕dξ functions as a source term in Eq. (A2),

whereas dQ�
1 ∕dξ � 0 [see Eq. (21)]. We solve for δP1, as-

suming an initial condition of δP1 � 0, by diagonalizing
the coupling matrix, which yields

δP1 �
Z

ξ

0
cos�ν�ξ − ξ0��dP

�
1

dξ0
dξ0; (A3)

where

ν �
�������������������������������������������
∂2H
∂Q2

1

����
Q�

1 ;P
�
1

∂2H
∂P2

1

����
Q�

1 ;P
�
1

s
�A4�

is the magnitude of each of the two imaginary eigenvalues
of the coupling matrix �iν. The nontrivial stationary states
fixed points are thus elliptic, where ν is the frequency of
periodic orbits around the fixed point. Since it is assumed
that the system is near an elliptic fixed point, this frequency
is large compared to all other rates of variation, so the most
significant contribution to the integral of Eq. (A3) comes
from ξ ≈ ξ0. We can therefore approximate δP1 by taking
dP1∕dξ0 at ξ0 � ξ, which can then be taken outside of the
integral, yielding

δP1 ≈
1
ν

dP�
1

dξ
sin�νξ�; (A5)

which was used for Eq. (24).
Finally, we note that the discussion above referred to a non-

trivial stationary state. Repeating the same analysis for a triv-
ial stationary state, for which H � −�ΔΓ∕8��P1 � 3P3�, yields
a matrix with two zero eigenvalues in Eq. (A2). Therefore, a
trivial stationary state does not correspond to an elliptic fixed
point in the �Q1; P1� phase space.

APPENDIX B: BANDWIDTH ESTIMATION
An estimate of the FWHM of the conversion efficiency η [see
Eq. (28)] will now developed. As noted in Subsection 3.B,
η�P1 � P3� � 0 and η�P1 � jP2j − P3� � 1. Furthermore,
η�P1 � jP2j� � 1∕2, i.e., η � 1∕2 when P1 is exactly half-
way between P3 and 2jP2j − P3. If P1 starts at P3 and follows
P−

1 , it is expected that P1 will end up at jP2j, i.e., half-way to
2jP2j − P3, if the stationary state fixed point P−

1 has traveled
the same distance. Assuming a very large chirp range, such
that P−

1 always starts near P3 or ends near 2jP2j − P3 (or both),
there are two cases in which this may happen: (i) P−

1 starts
near P3 and ends up at jP2j and (ii) P−

1 starts at jP2j and ends
near 2jP2j − P3. In the first case the estimation is more accu-
rate, since P1 starts near P−

1 and will thus follow it as expected
from the above theory. In the second case, P1 starts near P3

while P−

1 starts at jP2j, i.e., they are not near, so δP1 ≪ P3 is
not satisfied. Still, as a first-order approximation, we can ex-
pect P1 to traverse a path of similar length to that of P−

1 . Thus,
in the first case the condition P−

1 � jP2j is satisfied by ΔΓ at
the end of the interaction, while at the second case it is sat-
isfied at the start. The difference between these two values of
ΔΓ is, by definition, the chirp range, i.e., the bandwidth is
estimated to be

ΔΓBW � ΔΓ�Δξ∕2� − ΔΓ�−Δξ∕2�: (B1)

The above analysis assumes following of the minus state
with increasing ΔΓ; however, it applies to the general case
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of adiabatic following. First, when the minus state is followed
with decreasing ΔΓ, the efficiency is simply 1 − η, so the two
conditions for η � 1∕2 are clearly the same for 1 − η � 1∕2.
Furthermore, following the plus state is the same as following
the minus state with the opposite chirp direction, so once
again the same conditions apply. The estimation is therefore
valid whenever the requirements of adiabatic following are
satisfied, i.e., P1 ≈ P3 or P1 ≈ 2jP2j − P3 at the beginning of
the interaction, ΔΓ chirped such that it changes sign from be-
ginning to end, jΔΓj ≫ ������

P3
p

at the beginning and end of the
interaction and the condition of Eq. (26).
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